Complexity of the critical node problem over trees
نویسندگان
چکیده
In this paper we deal with the Critical Node Problem (CNP), i.e., the problem of searching for a given number K of nodes in a graph G, whose removal minimizes the (weighted or unweighted) number of connections between pairs of nodes in the residual graph. In particular, we study the case where the physical network represented by graph G has a hierarchical organization, so that G is a tree. The NP-completeness of this problem for general graphs has been already established (Arulselvan et al.). We study the subclass of CNP over trees, generalizing the objective function and constraints to take into account general nonnegative “costs” of node connections and “weights” for the nodes that are to be removed. We prove that CNP over trees is still NPcomplete when general connection costs are specified, while the cases where all connections have unit cost are solvable in polynomial time by dynamic programming approaches. For the case with nonnegative connection costs and unit node weights we propose an enumeration scheme whose time complexity is within a polynomial factor from O(1.618034n). Results from computational experiments are reported for all the proposed algorithms.
منابع مشابه
A method for analyzing the problem of determining the maximum common fragments of temporal directed tree, that do not change with time
In this study two actual types of problems are considered and solved: 1) determining the maximum common connected fragment of the T-tree (T-directed tree) which does not change with time; 2) determining all maximum common connected fragments of the T-tree (T-directed tree) which do not change with time. The choice of the primary study of temporal directed trees and trees is justified by the wid...
متن کاملA Heuristic Algorithm for Project Scheduling Problem to Maximizing the Net Present Value
This paper deals with resource unconstrained project scheduling problems with the objective of maximizing the net present value (NPV) of project cash flows. Here we present a heuristic algorithm named as differential procedure (Dif_AOA).
In order to evaluate the efficiency of this algorithm, networks with node numbers between 10-1000 and network complexity coefficients between 1.3-6.6 have ...
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملA Heuristic Algorithm for Project Scheduling Problem to Maximizing the Net Present Value
This paper deals with resource unconstrained project scheduling problems with the objective of maximizing the net present value (NPV) of project cash flows. Here we present a heuristic algorithm named as differential procedure (Dif_AOA). In order to evaluate the efficiency of this algorithm, networks with node numbers between 10-1000 and network complexity coefficients between 1.3-6.6 have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 38 شماره
صفحات -
تاریخ انتشار 2011